Package: qgcomp 2.18.4
qgcomp: Quantile G-Computation
G-computation for a set of time-fixed exposures with quantile-based basis functions, possibly under linearity and homogeneity assumptions. This approach estimates a regression line corresponding to the expected change in the outcome (on the link basis) given a simultaneous increase in the quantile-based category for all exposures. Works with continuous, binary, and right-censored time-to-event outcomes. Reference: Alexander P. Keil, Jessie P. Buckley, Katie M. OBrien, Kelly K. Ferguson, Shanshan Zhao, and Alexandra J. White (2019) A quantile-based g-computation approach to addressing the effects of exposure mixtures; <doi:10.1289/EHP5838>.
Authors:
qgcomp_2.18.4.tar.gz
qgcomp_2.18.4.zip(r-4.5)qgcomp_2.18.4.zip(r-4.4)qgcomp_2.18.4.zip(r-4.3)
qgcomp_2.18.4.tgz(r-4.5-any)qgcomp_2.18.4.tgz(r-4.4-any)qgcomp_2.18.4.tgz(r-4.3-any)
qgcomp_2.18.4.tar.gz(r-4.5-noble)qgcomp_2.18.4.tar.gz(r-4.4-noble)
qgcomp_2.18.4.tgz(r-4.4-emscripten)qgcomp_2.18.4.tgz(r-4.3-emscripten)
qgcomp.pdf |qgcomp.html✨
qgcomp/json (API)
# Install 'qgcomp' in R: |
install.packages('qgcomp', repos = c('https://alexpkeil1.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/alexpkeil1/qgcomp/issues
- metals - Well water data
exposureexposure-mixtureexposure-mixturesquantile-gcomputationsurvival
Last updated 2 days agofrom:62724cdcd9. Checks:1 OK, 8 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 28 2025 |
R-4.5-win | NOTE | Mar 28 2025 |
R-4.5-mac | NOTE | Mar 28 2025 |
R-4.5-linux | NOTE | Mar 28 2025 |
R-4.4-win | NOTE | Mar 28 2025 |
R-4.4-mac | NOTE | Mar 28 2025 |
R-4.4-linux | NOTE | Mar 28 2025 |
R-4.3-win | NOTE | Mar 28 2025 |
R-4.3-mac | NOTE | Mar 28 2025 |
Exports:coxmsm_fithomogeneity_testhurdlemsm_fit.controljoint_testmice.impute.leftcenslognormmice.impute.tobitmodelbound.bootmodelbound.eemsm_fitmsm_multinomial_fitmsm.predictpointwisebound.bootpointwisebound.nobootqgcompqgcomp.bootqgcomp.cch.nobootqgcomp.cox.bootqgcomp.cox.nobootqgcomp.eeqgcomp.glm.bootqgcomp.glm.eeqgcomp.glm.nobootqgcomp.hurdle.bootqgcomp.hurdle.nobootqgcomp.multinomial.bootqgcomp.multinomial.nobootqgcomp.nobootqgcomp.partialsqgcomp.survcurve.bootqgcomp.tobit.nobootqgcomp.zi.bootqgcomp.zi.nobootquantizese_combsimdata_quantizedsplit_datavc_combzimsm_fit.control
Dependencies:abindAERarmbackportsbootbroomcarcarDataclicodacodetoolscolorspacecowplotcpp11DerivdigestdoBydplyrfansifarverFormulafuturefuture.applygenericsggplot2globalsgluegridExtragtableisobandlabelinglatticelifecyclelistenvlme4lmtestmagrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivparallellypbkrtestpillarpkgconfigpsclpurrrquantregR6rbibutilsRColorBrewerRcppRcppEigenRdpackreformulasrlangrootSolvesandwichscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithrzoo
The qgcomp package: g-computation on exposure quantiles
Rendered fromqgcomp-vignette.Rmd
usingknitr::knitr
on Mar 28 2025.Last update: 2025-03-27
Started: 2018-10-25
Advanced topics for the qgcomp package: time-to-event, clustering, partial effects, weighting, missing data
Rendered fromqgcomp-advanced-vignette.Rmd
usingknitr::knitr
on Mar 28 2025.Last update: 2025-03-27
Started: 2024-06-29
Basic topics for the qgcomp package: g-computation on exposure quantiles
Rendered fromqgcomp-basic-vignette.Rmd
usingknitr::knitr
on Mar 28 2025.Last update: 2025-03-27
Started: 2024-06-29